An Introduction
fo

n

Marc Paterno

Neat Topics for Programmers
21 December 2010

N

“I always knew one day Smalltalk
would replace Java.
I just didn’t know it would be called Ruby.”

— Kent Beck,
creator of Extreme Programming and
Test Driven Development

Goals

® Learn enough Ruby to follow examples
® Become familiar with the Ruby object model

® Become familiar with the meaning and purpose of
metaprogramming

3/17

What is metaprogramming

4/17

A quick introduction to Ruby

5/17

Ruby is dynamic

® Variables do not need to be declared; they “spring into

® Variables do not have

e Variables are references to

Try this now!

>>
>>
>>
>>

a
a
a
a

=1
.class ()

= "hello’
.class ()

=>
=>
=>
=>

existence” when first encountered.

—objects have “types”!.

Fixnum
"hello’
String

"More precisely, objects belong to

6/17

Ruby is object-oriented

. is an object.
» object = state + behavior

» Every object is an instance of a
¢ behavior comes from classes

e Call class to get the class of an object.

Try this now!

>> 1.class () # => Fixnum
>> 'hello’ .class () # => String
>> nil.class () # => NilClass

>> nil.class () .class () # => Class

7/17

Classes and objects

class a category of objects that share common
functionality

object an instance of a class, with unique state and
identity
Every object can be asked for:
e itsidentity: x.object_id()

e itsclass: x.class ()

8/17

Classes and objects

class a category of objects that share common
functionality

object an instance of a class, with unique state and
identity
Every object can be asked for:
e itsidentity: x.object_id()
e itsclass: x.class ()

In Ruby, different instances of the same class do not necessarily
have the same member data ()

8/17

Invoking behavior

* Behavior is invoked by

e Usually this is done with the dot . operator
* No free function: sending message to self

Try this now!

>> i =1 # =1
>> 1i.succ () # => 2
>> puts (1) # => nil
1

e There are also more exotic ways to send messages

Try this now!

>> i.send(:succ) # => 2

9/17

Writing methods

Functions are called methods.

10/17

Writing methods

Functions are called methods.

® Ruby does not require parentheses for method calls

10/17

Writing methods

Functions are called

Ruby code

def greeting name # def’n starts with def
"Hello, " + name

end # def’n ends with end

puts greeting "Marc"
puts greeting "class"

® Ruby does not require parentheses for method calls

* Ruby doesn’t even require parentheses in method
definitions

10/17

Writing methods

Functions are called

Ruby code

def greeting(name) # def’n starts with def
"Hello, " + name

end # def’n ends with end

puts greeting "Marc"
puts greeting "class"

® Ruby does not require parentheses for method calls

* Ruby doesn’t even require parentheses in method
definitions

e ...but don’t do that, because it is weird

10/17

Writing classes

Ruby code

require ’date’
class Person
def initialize (name, dob)
@name, @dob = name, Date.parse (dob)
end
approximate age in years
def age
((Date.today—-Qdob) /365) .to_1
end
end
emp = Person.new "Gaius Julius Caesar",
"13 July 100 BC"
puts emp.age # => 2110

11/17

The Ruby Object Model

12/17

The critical concepts

® objects
o self

e current class

13/17

Inside an Object

» Each object is associated with another object, called its

 the associated object’s class is always Class
e the associated object is where Ruby starts to look for

e if the required method is not found,

« method lookup goes “up the chain” to any included
, and if the method is still not found,

e continues with the class’s

Let’s look at an example ...

14/17

Method lookup

x = ’cat’ x is the name of an object

15/17

Method lookup

x = 'cat’ x is the name of an object
x.class x’s class is the object named String

15/17

Method lookup

x = 'cat’
x.class
x.class.ancestors

x is the name of an object

x’s class is the object named String
String’s ancestors are

and

15/17

Method lookup

x = 'cat’
x.class
x.class.ancestors

x is the name of an object

x’s class is the object named String
String’s ancestors are

and

15/17

Method lookup

x = 'cat’ x is the name of an object
x.class x’s class is the object named String
x.class.ancestors String’s ancestors are

and

15/17

Method lookup

x = 'cat’ x is the name of an object
x.class x’s class is the object named String
x.class.ancestors String’s ancestors are

and

data

BasicObject

15/17

Method lookup: with eigenclass

x = '"cow’
def x.speak

puts "moo"
end

eigenclass

method

yavs

Ruby book

® Metaprogramming Ruby, Paolo Perrotta

Program

Like the _ %!
#)
Ruby Pros \\V
1
\\
N

The Facets of Ruby Series

17/17

